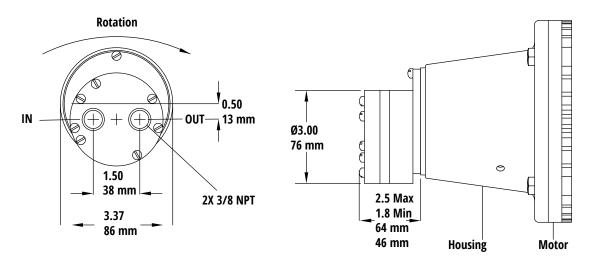
Specification SheetT Series Pump

Pump Details

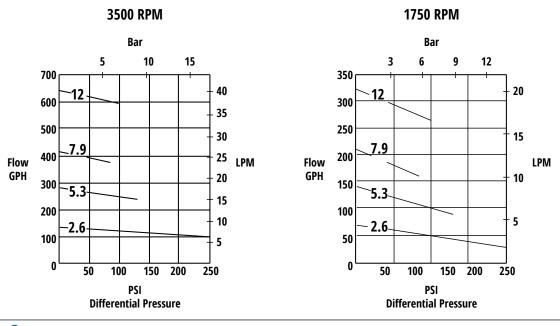
- Magnetic Coupled External Gear Pump
- Non-Pulsing Flow
- Positive Displacement
- Accurate
- Leak Free
- Chemical Resistant
- Long Life

Applications


Tuthill Pump Group specializes in OEM applications. All pumps have a wide range of options. Consult factory for other options and performance requirements. Laboratory Equipment, Water Purification, Water Treatment, Lubrication, Fluid Transfer, Recirculation, Cooling, Chemical Metering, Fluid Sampling, Temperature Control, Additive Delivery, Proportioning, Chemical Handling, Oil Filtration, Acids, Heat Transfer, X-Ray Equipment, etc.

General Specifications

Flow Rates	< 20 to 650 GPH (< 75 to 2460 LPH)	Metal Wetted Parts	316 Stainless Steel, Titanium, or Hastelloy C276		
Temperatures	-50 to 350°F (-46 to 176°C)	Ports 3/8 - 18 NPT; T2.6, T5.3, & T7.9 3/4 - 14 NPT 1/2 - 14 NPT Outlet, T8.0 & T12.0 only			
Differential Pressures	250 PSI (17.2 bar)	Speed	5,000 RPM maximum		
System Pressures	500 PSI (34.5 bar)	Service Life	Up to 20,000 hours + based on water		
Viscosity	0.3 to 2000 cps +	Suction Vacuum	28.5 " Hg (724 mm Hg)		
Magnet Torque	240 to 460 in-oz	Self Priming	Yes, wetted		
Magnet Materials	Samarium Cobalt	Size	3" diameter pumphead		


Flow @ 3500 RPM

GPH	LPH	GPH @ PSI Differential Pressure	LPH @ bar Differential Pressure	Continuous Duty Limit		Intermittent Duty Limit	
@ U PSI	@ u bar			PSI	bar	PSI	bar
137	518	114 @ 150	431 @ 10.3	150	10.3	250	17.2
279	1056	249 @ 100	942 @6.9	100	6.9	145	10
416	1575	384 @ 70	1453 @ 4.8	70	4.8	95	6.6
421	1593	353 @ 150	1336 @ 10.3	125	8.6	150	10.3
650	2460	600 @ 100	2270 @ 6.9	100	6.9	120	8.2
	@ 0 PSI 137 279 416 421	@ 0 PSI @ 0 bar 137 518 279 1056 416 1575 421 1593	GPH @ 0 PSI LPH @ 0 bar Differential Pressure 137 518 114 @ 150 279 1056 249 @ 100 416 1575 384 @ 70 421 1593 353 @ 150	GPH @ 0 PSI LPH @ 0 bar Differential Pressure Differential Pressure 137 518 114 @ 150 431 @ 10.3 279 1056 249 @ 100 942 @6.9 416 1575 384 @ 70 1453 @ 4.8 421 1593 353 @ 150 1336 @ 10.3	GPH @ 0 PSI LPH @ 0 bar Differential Pressure Differential Pressure Differential Pressure PSI 137 518 114 @ 150 431 @ 10.3 150 279 1056 249 @ 100 942 @ 6.9 100 416 1575 384 @ 70 1453 @ 4.8 70 421 1593 353 @ 150 1336 @ 10.3 125	GPH @ 0 PSI LPH @ 0 bar Differential Pressure Differential Pressure PSI bar 137 518 114 @ 150 431 @ 10.3 150 10.3 279 1056 249 @ 100 942 @ 6.9 100 6.9 416 1575 384 @ 70 1453 @ 4.8 70 4.8 421 1593 353 @ 150 1336 @ 10.3 125 8.6	GPH @ 0 PSI LPH @ 0 bar Differential Pressure Differential Pressure PSI bar PSI 137 518 114 @ 150 431 @ 10.3 150 10.3 250 279 1056 249 @ 100 942 @ 6.9 100 6.9 145 416 1575 384 @ 70 1453 @ 4.8 70 4.8 95 421 1593 353 @ 150 1336 @ 10.3 125 8.6 150

Materials of Construction

Metal Wetted Parts	316 Stainless Steel, Hastelloy C276, or Titanium		
Gears & Bearings	PPS (Polyphenylene Sulfide), PEEK (Polyetheretherketone), or PTFE		
O-Rings	Viton, PTFE, or EPR		
Ports	3/8-18 NPT; T2.6, T5.3 & T7.9 3/4-14 NPT Inlet & 1/2-14 NPT Outlet; T8.0 & T12. only		
Magnet Shrouds	PPS, PEEK, Encapsulated Samarium Cobalt, or Welded Samarium Cobalt		
Magnet Torque	240 in-oz or 460 in-oz		
Suction Vacuum	Pumps self prime when wetted with operating fluid to 28.5 Hg" (724mm Hg). Dry lift not recommended. Fluid viscosity, temperature and pressure may affect the performance.		
Motors	AC, DC, Air, Variable Speed or Motor Mate Adapter Kits		
Operating Temperatures above 140 °F (60 °C)	In the T Series Product line Tuthill offers special sizing options for operating at temperatures above 140°F (60 °C). These may reduce flow or pressure. Consult factory for details.		
Gear & Bearing Material Temperature Limit	PPS limits are approximately 250 °F (121 °C). Peek, Carbon, and Metal limits are approximately 350°F (176 °C). For temperatures above 250 °F (121 °C) Carbon bearings should be selected.		

